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CR STRUCTURES OF CODIMENSION 2

ROBERT I. MIZNER

0. Introduction

There are several known methods of associating a Cartan connection
on a principal bundle to a nondegenerate codimension 1 CR structure. By
analyzing an appropriate moduli space, we are able to define a class of
admissible codimension 2 CR structures which is analogous to the class
of nondegenerate CR structures. Given an admissible CR structure on a
manifold A we construct a principal bundle, in fact a subbundle of the
frame bundle of M, and a connection on this bundle. In addition, we
decompose 7'M as a direct sum of subbundles of fiber dimensions 1 and
2.

In §1 we present the basic definitions and some fundamental examples
of CR structures. In §2, after defining the Levi map of a CR structure and
the moduli space in which the Levi map is valued, we compare CR struc-
tures of codimensions 1 and 2 and then define admissible CR structures.
In §3 and §4 we develop the geometry of such structures by methods remi-
niscent of both Chern’s treatment of nondegenerate CR structures [1] and
Webster’s treatment of pseudohermitian structures [5]. In §5 we exam-
ine the moduli space in detail. Finally, in §6 we consider some examples
of admissible CR structures, and raise a few unanswered questions. One
need not master the intricacies of §5 in order to understand the discussion
in §6.

Terminology is either standard or defined when it first appears. Any un-
defined differential geometric terms can be found in [2]. Several notational
conventions are used, but not mentioned, in the text:

(1) There are a great number of indexed entities, and the range of the
index varies with the entity. There are frequent reminders of the appro-
priate range, but there are also many instances when the range is given
only implicitly, by the entity itself. The index set {1,2,---,n} is denoted
by I,; the null set is sometimes denoted by I;.
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{(2) Summation convention is used in the sense that whenever a term in-
volves a single letter used as both a subscript and a superscript, summation
over the range appropriate to the entities involved is implied. However,
when a single letter occurs more than once in a term, but only as a sub-
script or only as a superscript, no summation is implied. In short, a/b;
implies summation; a/b/ and a;b; do not.

(3) If 9!, 92, -+, p* are differential forms defined on an open subset U
of some manifold, then I(p!, ¢2,--- , 9*) denotes the ideal of differential
forms on U generated by {¢!,¢?, -, ¢*}.

(4) If several local sections of a bundle are under consideration, they
are assumed to have the same domain unless otherwise indicated.

(5) The term smooth is used to mean C*°. All manifolds and maps
between them are assumed to be smooth, unless otherwise indicated.

(6) S) is the permutation group on k letters.

(7) If E is a real vector bundle, then CE is its complexification.

This paper is partly based on a portion of the author’s Ph. D. thesis [3],
which was written under the guidance of Masatake Kuranishi. The author
would like to thank him for his help, and for the kindness with which he
gave it. The author would also like to thank John Zweibel for numerous
helpful conversations, and for several painstaking readings of early drafts
of this paper.

1. Basic definitions and an example

Definition 1. Let M be a smooth (2n + k)-dimensional manifold. A
CR structure of dimension n and codimension k is a pair (D, J), where
D c TM is a smooth subbundle of fiber dimension 2» and J is a bundle
automorphism of D, which satisfies the following conditions:

(a) J2=-1,

(b) if X and Y are sections of D, then [X,Y]—[JX,JY]and [JX,Y]+
[X,JY] are also sections of D, and

J(X, Y] = [JX,JY]) = [JX, Y] +[X,JY].

Definition 2. Let M be a smooth (2n+k)-dimensional manifold. A CR
structure of dimension n and codimension k is a subbundle 7" c CTAM,
of complex fiber dimension », which satisfies the following conditions:

(a) T" N T" is the zero subbundle;

(b) [T, T"]C T".



CR STRUCTURES OF CODIMENSION 2 169

The equivalence of Definitions 1 and 2 is easily verified. Given (D, J),
extend J by complex linearity to CD and let

T"={Z €CD|JZ = —iZ}.

Conversely, given T”, let J; be the automorphism of 77 & T" which acts
on T" (respectively T"') as multiplication by i (respectively —i), and then
take D to be the set of real elements of 7”@ T" and J to be the restriction
of J,| to D.

Given a CR structure in the form (D, J) (respectively T"), we shall take
T" (respectively (D, J)) to be defined in the preceding way. Also, we shall
write T’ for T".

Example 1. Let M be an n-dimensional complex manifold with com-
plex structure J: TM — TM. Then (TM,J) is a CR structure of dimen-
sion n and codimension 0.

Example 2. Given an (n + 1)-dimensional complex manifold N with
complex structure Jy: TN — TN and a smooth, real hypersurface M C N,
let D be the maximal Jy-invariant subset of T M and denote the restriction
of Jy to D by J. It is easy to verify that (D,J) is a CR structure of
dimension # and codimension 1.

Example 3. Let N be an (n + 2)-dimensional complex manifold with
complex structure Jo: TN — TN. A codimension 2 submanifold M is the
union of disjoint subsets A, and A, (either of which may be empty), where
p € M, if and only if D,, the maximal Jy-invariant subspace of T,M, has
real codimension a. M, is open. If M, is not empty, then Uper, Dp
is a smooth subbundle D of TAM,. By restriction, Jy induces a bundle
automorphism J:D — D, and (D, J) is a CR structure of dimension #
and codimensiog 2.

Note that if M, the interior of M in the topology of M, is not empty,
then the restriction of J; to T}\OJ o is a complex structure. Hence, by the

Newlander-Nirenberg theorem, M, is a complex manifold. In particular,
if N = C"*2 and M is compact, then, since C"*2 has no compact complex
submanifolds, M, cannot be empty. Thus, we see that codimension 2 CR
structures are in a sense unavoidable. More formally, we have proved the
following theorem.

Theorem 1. Every compact codimension 2 submanifold of C"+2 contains
a nonempty open subset that inherits a CR structure of codimension 2.

The geometry of CR structures is bound up with the algebra of hermi-
tian forms. As a simple illustration of this connection, we consider the
following examples.
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Example 4. Specialize Example 2 by supposing that N = C**! and
that M is given as the zero set of a smooth real-valued function f. Let
6= J3df and fix ¢ € M. The 2-form d § determines a hermitian form hy
on 7, as follows: forall X,Y € T}

hy(X,Y) = —idB(X, 7).

A different defining function £ yields a different hermitian form /,. How-
ever, it is easy to verify that izq = Ph, for some P € GL(1,R). Thus,
there is an equivalence class of hermitian forms associated to g, the only
invariants of which are signature and rank. These invariants determine
the general nature of the local CR geometry of M.

Example 5. Specialize Example 3 by supposing that N = C"*2 and
that M is given as the zero set of a pair of smooth real-valued functions
(f%, f?). For each o € I, let §= = J;df®, and fix ¢ € M. As in Example 4,
each 2-form d@* determines a hermitian form hg on T;. A different pair
of defining functions (f!, f2) yields different hermitian forms 4} and A2.
It is easy to verify that there exists P € GL(2,R) such that izg = Pgh;f for
all a € I,. Thus, there is an equivalence class of pairs of hermitian forms
associated to ¢, and invariants of this class are analogous to the signature
and rank in the codimension 1 case.

Although Examples 4 and 5 are quite special cases, they typify the gen-
eral situation insofar as the role played in the codimension 1 theory by a
heérmitian form is played in the codimension 2 theory by a pair of her-
mitian forms. Consequently, the algebraic preliminaries needed for the
study of codimension 2 CR structures are much more complicated than
those needed for the study of codimension 1 CR structures. An under-
standing of the geometric significance of these hermitian forms emerges
from a more abstract study of CR structures.

2. The Levi form, the Levi map, and admissibility

For the remainder of this paper, n is a fixed positive integer and all CR
structures are of dimension #.

Let T” be a codimension & CR structure on the (2n + k)-dimensional
manifold M, and let

n.CTM - CTM/(T' & T")
be the natural projection. The Levi form of T" is the bundle map
LT'xT - CTM/(T'& T")
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determined by the requirement:
L(X,, Y,) = in([X,Y],),

where X and Y are sections of 77 and g € M.

Let ¥V and W be complex vector spaces, and suppose that W has a
conjugation. A W-valued hermitian form on V is a sesquilinear map H: V' x
V — W which satisfies the hermitian symmetry condition:

H(x,y) = H(y,x).
Given g € M, let L, denote the restriction of L to T; x T;. It is easy to
verify that L, is a CT, M/(T; ® T;')-valued hermitian form on 77.
An isomorphism of two hermitian forms H:V x V — W and H: V' x
V' — W' is a pair (4, P), where A:V — V'’ and P:W — W' are linear
isomorphisms that satisfy the following conditions:

(a) P(@) = P(w) forallwe W (ie. P = P);

(b) PH(A 'x,A7'y) = H'(x,y) forall x,y € V"

T" is weakly uniform if for all p,q € M the automorphism groups of
L, and L, are isomorphic; T” is strongly uniform if for all p,q € M the
forms L, and L, are themselves isomorphic.

Let HF™k be the set of all C¥-valued hermitian forms on C". HF "™ is
a real vector space, and therefore carries a natural topology and smooth
structure. The natural bases (e, e, - - ,e;) and (fi, f5,--+, fn) of CX and
C" induce a coordinatization of HF™X: the components of a form H €
HF"* are the hermitian matrices H', H2,--- , H* determined by the re-
quirement that for all r,s € I,

H(f;‘yf;) = Hrlgel -+ HrZEeZ + -+ H:%ek.
The group G™* = GL(n,C) x GL(k,R) acts on HF™* as follows:
(A, P) H(x,y) = PH(A—IX,A—ly).

Clearly, two forms in HF"* are isomorphic if and only if they lie in the
same G™%-orbit. Let [H F"*]be the set of G"*-orbits and let p*: HF " —
[HF™*] be the natural projection; denote the p™*-image of a subset ¥ C
HF™k by [Y]. Give [HF"k] the quotient topology. Note that this topology
is not Hausdorff since every neighborhood of 0 € HF”* meets every G™X-
orbit nontrivially.

The Levi form determines a map £: M — [HF), called the Levi map
of T": for each p € M the orbit L(p) comprises all forms in HF that are
isomorphic to L,. The Levi map is a CR-invariant; i.e., if £, and L, are
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the Levi maps of the CR structures 7]’ and 7} and f is an isomorphism
of T{" with T}, then L; = L0 f.

It is instructive at this point to examine the structure of [HF™!] and
its relation to the geometry of codimension 1 CR structures. Well-known
results on scalar hermitian forms show that two forms in HF™! are iso-
morphic if and only if they have the same rank and the absolute values of
their signatures are equal. It is easy to verify that [H F™!] is finite, but not
discrete, that each orbit of nondegenerate (i.e., rank n) forms is an open
one-point subset of [ F™!], and that the union of these one-point subsets
is a dense open subset [Z"] ¢ [HF™!]. A codimension 1 CR structure
is nondegenerate if its Levi map £ is valued in [Z"]. Since £ is contin-
uous and {Z"}] is discrete, £ is locally constant. Therefore, the following
proposition is obvious.

Proposition 1. A4 nondegenerate codimension 1 CR structure on a con-
nected manifold is strongly uniform.

Let n:[Z"] — HF™! be an arbitrary section; i.e., 7 is any map with the
property that p™!on = 1. The significance of 7 is that if £ is the Levi map
of a nondegenerate CR structure then . = # o £ is a canonical smooth
HF"!.valued map that covers L. Clearly, [ is a CR-invariant that carries
all the information carried by £. Moreover, since £ is valued in HF®!
instead of [H F™!], its algebraic properties are much simpler than those of
L. Although it is not usually expressed in these terms, passing from £ to
£ is the first step in the study of nondegenerate CR structures (see [5] and
[1]). For future reference we record two properties enjoyed by any section
n.

Proposition 2. (a) For any x € [Z"] the component of §(x) is invertible.

(b) If f is a smooth map of a manifold N into HF™ such that p™' o f
is valued in [Z"), then for each p € N there exists a smooth G™'-valued
map g defined on some neighborhood U of p with the property that for each
gelU

g(g)- f(g) =nop™ o f(g).

Proof. (a) follows immediately from the relevant definitions; (b} fol-
lows from a cursory examination of the standard procedure for diagonal-
izing a scalar hermitian form. q.e.d.

In order to discuss the geometry of higher-codimensional CR structures
along the preceding lines, one must first gain some understanding of the
moduli spaces [HF "] for k > 1. An obvious way to begin is to associate
to each form H € HF"* the homogeneous polynomial

Qu(T, Ty, ,Ty) =det(T\H' + ToH? + - - - + T, H"),
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and then to look for G**-invariants of these polynomials. Unfortunately,
the quest for such invariants is forbiddingly difficult if k& > 2; therefore we
assume that k = 2. To simplify notation, from now on we denote HF"2,
[HF™?], p*? and G™* by HF, [HF], p, and G.

Given H € HF, consider the inhomogeneous polynomial Py(T) =
det(TH!' + H?). The degree of Py, denoted by dy, is not greater than
n; if 8y < n, then oo is a root of multiplicity » — . Let Ry C P!(C) be
the set of distinct roots of Py. We view P!(C) as comprising the upper
half-plane H*, the lower half-plane H, and the extended real axis RU{co}
(or equivalently, P!(R)). In particular, we consider co to be real.

Let ¥ be the group of real Mobius transformations. Given a matrix

a b
P‘(cd)
in GL(2,R), let Ap € ¥ be the map

tHat+c
bt+d’

Proposition 3. Let H and K be isomorphic forms in HF. IfK = (A4, P)-
H, then Ry is the Ap-image of Rg.
Proof.  Use the following formula:

Px(T) = |det A|"% det((aT + c)H' + (bT +d)H?). q.ed.

For each pair of nonnegative integers (r, ¢) with r + 2¢ = n, let HF (r,¢)
be the set of all H € HF such that Ry contains r real points and ¢ pairs
of complex conjugate points, and let

HF(n)= |J HF(r).
r+2c=n
It follows from Proposition 3 that HF(r,¢) is a G-invariant subset. Using
the fact that Py(T) has real coefficients, one easily proves that a form
H € HF belongs to HF (n) if and only if Ry contains n points, that each
HF(r,c) is an open subset of HF, and that HF(n) is a dense open subset
of HF.

We think of [HF(n)] as an analogue of [Z"]. Therefore, an analogue
of a nondegenerate CR structure is a codimension 2 CR structure whose
Levi map is valued in [HF(n)]. By continuity, the Levi map of such a
CR structure is locally valued in some [HF(r,c)]; we say that it is locally
of type (r,c). Unfortunately, the analogy breaks down when we recall
Proposition 1, since the requirement that the Levi map of a codimension
2 CR structure be constant is much more stringent than that it be of some
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type (r,¢). In order to save the analogy, we substitute weak uniformity
for strong uniformity. We show in §5 that the automorphism group of a
generic form in H F(r, ¢) is conjugate to the closed Lie subgroup Gy(r,¢) C
G consisting of all (4, P) such that

(a) P = yI for some y in R — {0},

(b) A = diag(4,,4,,---,4,) for some 4; in C — {0},

(c) |4;|* =y for all i in I,, and

(d) Ary2j—14r42; = y for all j in I..

Therefore, a better analogue of a nondegenerate CR structure is a codi-
mension 2 CR structure whose Levi map is locally valued in a suitable
dense subset of some [HF(r,c)]. We still must find an analogue of the
section #:[Z"] — HF™!,

Definition 1. Let r and ¢ be nonnegative integers with r + 2¢ = n, and
let [X] be a subset of [HF(r,c)]. An admissible section of type (r,c) is a
map o:[X] — HF which satisfies the following conditions:

(a) p oo is the identity;

(b) for each x € [X], the automorphism group of a(x) is Go(r, ¢);

(c) for each x € [X], the components of ¢(x) are invertible;

(d) if f is a smooth map of a manifold N into HF such that po f is
valued in [X], then for each p € N there exists a smooth G-valued map
g defined on some neighborhood U of p with the property that for each
gelU

g(q) flg)=0c0po f(q).

This definition calls for a few comments. Condition (a) merely says
that o is a section. Conditions (c) and (d) are suggested by Proposition
2; (d) is important because [X] does not necessarily have a smooth struc-
ture. By the preceding discussion, if [ X] is generic then for each x € [X]
the automorphism group of a(x) must be conjugate to Gy(r, c); condition
(b), requiring equality instead of conjugacy, simplifies matters. Note that
neither (b) nor (c) is a G-invariant condition. Finally, in §5 we prove that
if n > 7 then each set [HF (r,c)] contains a dense open subset on which
there is defined an admissible section of type (r,¢) (see Theorem 5.2).

Thus, we are led to the following definition of an analogue of a nonde-
generate C R structure.

Definition 2. Let o be an admissible section of some type (r,¢). A
codimension 2 CR structure is g-admissible if its Levi map is valued in
the domain of o.

On the surface, the requirement that a codimension 2 CR structure be
admissible does not seem unduly restrictive. However, in §4 we show (see
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Theorem 4.1) that if (D, J) is an admissible CR structure then D is the
intersection of two globally defined distributions of rank 27 + 1 and the
topology of the underlying manifold satisfies certain stringent conditions.
Thus, in general, instead of hoping to find an admissible CR structure on a
given manifold M, one must be content to find an admissible CR structure
on some open submanifold of M (e.g., a coordinate neighborhood). We
return to this point in §6, where we consider some examples.

3. The geometry of admissible C R structures: local analysis

In this section and the next, ¢ is an admissible section of some type
(r,c), Gy is the group Gy(r,¢), T" is a o-admissible CR structure on the
(2n+2)-dimensional manifold M, £ is the Levi map of 7", and £ = go L.

It is easy to verify that for each ¢ € M there exists a neighborhood U
of ¢ on which a C"-valued 1-form w and a C3-valued 1-form 6 are defined
such that
(a) T"|y is the kernel of ¢ and w,

(b) CD|y is the kernel of 6,

(c) the components of w, @, and é provide a basis of complex 1-forms
on U, and

(d)  =6.

(w; 0) is called a partially adapted moving coframe.

The integrability condition [7”, T"] ¢ T" implies that each of the forms
d6® and dw/’ belongs to the ideal

I1(64,60% !, w?, - ,w").
Therefore, there exist unique smooth complex functions h;‘z(w,e) and
a% (o, 0) defined on U such that

(1) do° = ih%(w,0)w’ A @ + a5 (0,0)w’ Aw* mod1(6',07).
Since d6¢ is real, it follows from (1) that

(2) d6® = ih%(o, 6w’ A" modI(8',6?%),

(3) h=(w,0) = E;%;(w, 6).

Given p € U, let H(w,0)(p) be the form in HF whose components
H¢(w, 8)(p) have entries h;’z(w,ﬁ)(p). A computation based on (2), (3),

and the identity
d0°(X,Y) = X0°(Y) - Yo%(X) - 0°([X,Y))
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shows that H(w, 8)(p) is isomorphic to the Levi form L,.

Proposition 1. If (w;0) and (w,;6,) are two partially adapted moving

coframes defined on the same open set U, then there exist smooth maps
A:U — GL(n,C), P:U — GL(2,R), and v:U — Hom(C?,C")
such that

(a) 6 = P306%,

(b) 0/ = ALk +v{03, and

(c) H(w,0) = (4,P)  H(wy,0,).

Proof. (a) and (b) are obvious; (¢) follows from a comparison of dé
and d6,. q.ed.

We now use the hypothesis that 7" is o-admissible to define a more
restricted class of moving coframes: a partially adapted moving coframe
(w; 8) is o-adapted if, for each a € I,

de* — iﬁj,%wf A@ =0 modI(6%).

Proposition 2. Let g € M. There exists a o-adapted moving coframe
defined on some ne{ghborhood Uofg.

Progf. Let (&, 6) be a partially adapted moving coframe. The map
H(d, 0) satisfies the hypothesis of condition (d) in Definition 2.1. There-
fore, there exists a neighborhood U of p and smooth maps

A:U — GL(n,C) and P:U — GL(2,R)

such that i X
(A,P)-H(@,0) =00 po H(®,0).

Define a partially adapted moving coframe (w., 6,) on U by requiring

w’, = 4@ and 6% = P;;é/’. By Proposition 1,
H(w.,0.)=(A4,P)- H(&,).

Therefore, h" (a)+, @.) is the restriction to U of [Z“

By 1ntegrab111ty, there exist 1-forms 7% 4 defined on U such that
(i) des = lﬁj?zwiAw++0£ATﬂ.
The forms ¥ determine smooth maps ag; U — C and b;;y: U — R such
that
(i) 15 = a0’ +T3;0% + b5, 0.

Let 2>/ be the functions inverse to ﬁ‘j%; ie.,

akj a __ sk Ao "(z,ES_ s
LoFifs = 6F and Lo LR =4y,

7
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Define new 1-forms on U by the conditions

(i) 6° =0,

@iv) wl =wl —if>*ak 0" —if gk, 6%,

Elementary, but lengthy, computations using (i)—(iv) show that (w; ) is a
o-adapted moving coframe. q.e.d.

Proposition 3. Let (w;0) and (w.;0.) be g-adapted moving coframes
defined on some open set U. There exist smooth maps p:U — R and
a’: U — C such that

(a) (diag(a',a?,---,a"),pI) maps U into Gy,

(b) 6« = p6%, and

() w/ =adlw’.

Proof. Since T" is of type (r,c), Proposition 1 implies that there exist
smooth maps p:U — R, a/: U — C, and v/: U — C which satisfy (a), (b),
and

() o = dwl +v62.

It follows from (a) and (b) that for each a € I»

(i1) I(6%) = I1(6%)
and
(ii1) dg* = pdd¢ mod I(0°).

Together with the definition of a o-adapted moving coframe, (ii) and (iii)
imply that

(iv) Lo NG =pLiw’ AW, mod I(6%).
A computation using (iv), (i), and (a) shows that each v/} is identically
zero. q.e.d.

We conclude this section by showing how a g-adapted moving coframe
determines several additional useful forms.

Proposition 4. Let (w; 8) be a a-adapted moving coframe defined on U,
and suppose that

IO = I({HQ}QEIZ:» {wj}jel,,):
IV = I({0%}aen {0 Yker,— (3 {@ Yeer,)-
There exist unique 1-forms n* and 3/ and unique 2-forms y/ defined on U

such that
(a) = =77,
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(b) do= = iﬁ;';wj AT* + 6% A7,
(©)dw/ =w/ AN} + y/,
@y e(I/AINI% and
(€ in' +7%) =LY (W + 7).
Proof. Since (w; @) is g-adapted, there exist 1-forms n¢ defined on U
such that
: o _ ; pa i A 75K a a
(1) do -zﬂj;wf/\a) + 0% A TS,
Let j € I,. By integrabilit_y, dw’/ = 0 mod I9. Therefore, there exist a
1-form 2/ and a 2-form y{ defined on U such that
(ii) do’ = w/ AN + i,
(iii) wle(I'AI)n IO,
Define smooth maps 5*: U — R and ¢/: U — C by the condition

n

(iv) %(n; +a2) - % ST+ 1) =016+ 5267 + 3 (! + TD).

Jj=1 j=1
Finally, let
v) n® = n% — 2b%6°,
(vi) M= +ndwl,
(vii) wi =yl

The verification of (a)-(d) is trivial; a computation based on (iv)—(vi) es-
tablishes (e). Since (b)-(d) determine y/ completely, determine n* mod-
ulo I(6°), and determine 2/ modulo I(w’), uniqueness follows from (e).
q.e.d.

4. The geometry of admissible CR structures: constructions

We maintain the hypotheses and notation of the preceding section. A
o-adapted coframe at the point g € M is an (n + 2)-tuple of 1-forms

(0'(q), 0*(q), -, 0" (q);0'(q),0*(q)),

where (w; 6) is a o-adapted moving coframe defined on some neighbor-
hood of gq. The symbols E,;, E, and 7 denote, respectively, the set of all
o-adapted coframes at ¢, the union qu 1 Eq4, and the natural projection
of E onto M.



CR STRUCTURES OF CODIMENSION 2 179

Let U be the collection of all ordered pairs (U, (w; 8)), where (w; )
is a g-adapted moving coframe defined on the open set U. Given x =
(U, (w;0)) in U, let §, p, and a’ be the component maps of U x Gg. That
is, for each ¢t in U x Gy

t = (6(1), (diag(al(1),a*(1),--- ,a*(1)), p(t)])).
Finally, let ®,:U x Gy — E|y be the map
(a'd*w',a’6*w?,- - ,a"8* w"; pd* 6, ps*e?).
Proposition 1. E is a principal bundle over M with structure group Gy.
Proof. Tt follows from Propositions 3.2 and 3.3 that the set of maps
{®,|x € U} defines a smooth structure on E. The remainder of the proof
consists of routine verifications. g.e.d.

The tautology forms of T” are 1-forms €/ and ©“ defined on E as
follows: given ¢ = (w(q);@(q)) in £ and X € T, E,

©°(X) = 0*(g)(t.X) and Q/(X)=w/(g)(7.X).

Theorem 1. Consider the ideals Iy = I{{0°}aen, {Q¥}ier,) and I; =
I({@"}néh,{Qk}ke,”_{j},{ﬁk}ke,"). There exist unique 1-forms I1* and
A and unique 2-forms Y/, all defined on E, such that

(a) e =T,

(b) 4" = (£ 0TIV A O +eo AT,

(€) dQY = QI AN + W,

(d)‘I’je(Ij/\Ij)ﬂIo,and '

(e) 3T + ) = 137 (A +A)).

Proof. Uniqueness is proved as in Proposition 3.4. Because of unique-
ness, it suffices to prove existence locally.

Given x = (U, (w; 0)) in U, let 7, A/, and y/ be the forms on U treated

in Proposition 3.4. Given any differential form # on U, denote 6*n by 4.
Clearly

(1) (@) 7 =1"n.

Finally, let ©¢ = (®,)*©" and let &/ = (®,)*Q/. Straightforward compu-
tations show that

(ii) 6 = pb°,
(iif) Q) =da,
(iv) d6> = i(L% 0 8)i) A DK + 67 A7,
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V) di) = @/ NV + .

It follows from (ii)-(v) and the definition of Gy that

(vi) 46" = i(L% 0 ) A QK + 6% A (~p~'dp + 7%),
(vii) dS¥ = QA (—(a)) " dal + V) + al .
Define I1*, A/, and ¥/ on E|y as follows:

(viii) I* = (®; 1Y (—p~'dp + #%),

(ix) N = (D) (—(a))"da! + 1),

(x) Y = (D) (al ).

The verifications required to complete the proof are routine. g.e.d.
Consider the following forms on E:

I/ = L' + 12 + LA/~ X) forall jel,
—r+2j

rr+2j—1 — %(Hl +n2) + %(Ar+2j—l -A

—r+2j—1

% = JI' + 1) + (A - A ) forall jel,
o= LI1' +11?) forallac€ b.

Finally, let I' = diag(I'!,I"%,-.- ,I'"*2). Straightforward computations
based on (i)-(x) establish the following theorem.

Theorem 2. I is a connection form on E.

At last we can state and prove the geometric results promised in the
introduction.

Let (D, J) be the real form of T”. Given ¢ € M, a g-adapted coframe
e = (w(q); 8(q)) determines a basis

('), 0%(q), -, w"(q); @' (q),@*(q), - ,@"(q);0'(q), 0*(q))
of CT; M. The dual basis of CT, M is of the form
(213223 e 32)‘!;713723 o :_Z-n;Xl,XZ),

where Z; € T’ and X, is real. Note that the real and imaginary parts of Z;,
denoted by Y,;_; and Y,; respectively, are in D, and that Y5; = —JY5;_;.
Let

) forall jel,,

Q(e) = (Y]: Y27' Y anaXhXZ)'
The resulting map @: £ — F(M) is an injection; denote its image by B.
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Let Z:Gy — GL(2n + 2,R) be the map that takes the matrix
(diag(a',a?,--- ,a"), pI) to the block diagonal matrix with jth block

Rea’ ~Ima’
Ima’ Rea’

for all j € I,,, and (n + 1)th block

(5 2)

Clearly, T is an injection, and its image, denoted by G,, is a closed Lie
subgroup of GL(2n + 2,R). We use the symbol £ to denote not only
the isomorphism between G, and Gy, but also the induced isomorphism
between the corresponding Lie algebras gq and §o.

The following theorem is easily verified.

Theorem 3. B is a Gy-structure on M, i.e., B is a smooth subbundle of
F (M) with structure group G,.

Theorem 4. The form y = Lo (Q~1)*T is a connection form on B.

Proof. Given g € Gy (respectively g € Gyp), let R, (respectively R;)
denote the right action of g (respectively &) on E (respectively B). A
straightforward computation yields the formula

(1) Qo Ry = Ryg)-100.

The verifications required to complete the proof follow from (1), Theorem
2, and the fact that the groups Gy and Gy are abelian. q.e.d.
Computation shows that the torsion of y involves [; in particular, the
torsion is not zero.
Suppose that 7" is a g-admissible C R structure on the (21+2)-dimension-

al manifold M, with associated Gy-structure B and connection form 7.
Any diffeomorphism f: M — M induces a smooth map from F(M) to
F(M). We denote the restriction of this map to B by fs.

Theorem 5. A diffeomorphism f: M — M is an isomorphism of T" with
T if and only if fy is an isomorphism of B with B. Moreover, if f is an
isomorphism, then (fa)*9 = y.

Proof. The first statement follows from the construction of B and B.
The second statement follows from the construction of y and $ and the
uniqueness assertion in Theorem 1. gq.e.d.

We conclude this section with the result mentioned at the end of §2.

Given g € M, let y = (Y}, Y2,---, Ya,42) be in By, let V;(gq) be the
subspace of T, M spanned by Y,;_1(q) and Y;(q) for each j € I,, and
let V,1(q) be the subspace of T, M spanned by Y3,..(q) for each o € I.
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Note that for each u € I,,,,, the space V,(g) does not depend on the choice
of y. The following theorem is now obvious.

Theorem 6. For each u € 1.2, let Vy, = U, e pr Va(9)-

(a) Each set V, is a smooth subbundle of TM.

OYTM=ViaV,® & Vpo.

cyD=VieV,e -V,

(d) V; is J-invariant and has fiber dimension 2 for each j € I,.

(&) Vi has fiber dimension 1 for each a € I,.

Note that if V., and V,,, are trivializable, then it is possible to choose
globally defined linearly independent real 1-forms 6! and 62 that annihilate
D. The pair (8!, 6?) is an analogue of a pseudo-hermitian structure (see
[5]). The geometry of a codimension 2 CR structure, not assumed to be
admissible, equipped with such a pair of 1-forms is developed in [4].

5. The moduli space [HF]

In this section we continue the discussion of [H F] which we began after
Proposition 2.2, Our main purpose is to produce examples of admissible
sections; in so doing, we construct coordinates on a smooth part of [H F].
We assume that n > 7.

Given four points ¢; in P!(C), consider the cross ratio

(81— 6)(t2 — ta)
(- blts 1) = G ) 6= 5)
and let

(11, 12|13, 84)) = {(to(1); ta(2)lta(3)s La(4))| O € S3}.

It is well known that this last set contains at most six elements. A form
H € HF(n) is asymmetric if, for any subsets S = {s1,5,53, 54} and T =
{t1, 82, t3,ta; of Ry, the sets ((51,52|53,54)) and ((¢;,¢,]t3,24)) each contain
six elements, and are disjoint unless S equals 7. Let AHF(r,c) be the set
of asymmetric forms in HF (r, ¢); clearly, AHF (r, c) is a dense, open subset
of HF(r,c). Since cross ratios are preserved by Mobius transformations,
it follows from Proposition 2.3 that AHF(r,c) is G-invariant.

Proposition 1. Let H be asymmetric. If A € ¥ maps Ry to itself, then
A is the identity.

Proof. It suffices to show that A fixes at least three points. By asymme-
try, A maps each four-element subset of Ry to itself. Since Ry contains
more than four points, A fixes each point of Ry. g.e.d.

Let / be either a vertical line in C or a circle in C centered at some point
in R; the Ayperbolic line [ is the intersection of [ and H*. The intersection
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of P1(R) and / contains exactly two points, called the ideal points of I, one
of which is oo if and only if I is a vertical line. Two distinct points z; and
Z» in H* determine a unique hyperbolic line /(z,, z,), the ideal points of
which can be labelled p(z,, z;) and ¢g(z), z») in such a way that

(z1, 22l9(z1, 22), p(21,22)) > 15

the hyperbolic distance d(z,, z,) is the logarithm of this cross ratio. An
asymmetric form H is regular if Ry contains none of the ideal points of
the hyperbolic lines determined by pairs of points in Ry NH*. The set
of regular forms of type (r,¢), denoted by RHF (r,c), is a dense, open, G-
invariant subset of AHF(r,c). Moreover, if c < 2 orr =0, then RHF(r,¢)
equals AHF(r,c).

We shall use the sets RHF(r,c) to construct admissible sections. We
begin by associating to each H € RHF(r,c¢) an ordered n-tuple

CH = (ul,uz,"' ,ur,ﬂla-FbBZ,?z"" ,;BC,BC)

({(u; B) for short), where each u; belongs to R and each f; belongs to H*.
We must distinguish four cases:

Dec=0; Ic=1, (D)c=2; (IV)c>3.

Case 1. Let H € RHF (r,c). By asymmetry and elementary properties
of cross ratios, the points of Ry can be listed as (f,%, - ,¢) in exactly
one way such that if

Ui jogsia = (Lis Ualtjss i)

then

(a) u1,2,3,4 < ujhjz,jg,j/; for all {jlaj29j3aj4} ?é {1,2, 3’ 4},
(b) U123, <Uu2s3j+ forall3<j<r,

(c) U123,5 < min{uy 14 55U34,1,5 4325}

Let Ty be the Mdbius transformation that sends ¢ — —1, £, — 1/2, and
t3— 2, and let
Cy = (Tu(t), Tu(ta), -+, Tu(tr)).
Case 11. Given H € RHF(r,c), write the real roots of Py, and define

Ty, as in case I, and write the complex roots of Py as 8 and B, where
Ty(B) € HT. Let

Cy = (Tu(ty), Tu(t2), - . Tu(t,), Tu(B), Ta(B)).
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Case II1. Given H € RHF (r,¢), let {z, 22} = Ry NH*, and let T and
T, be the Mobius transformations that send p(z,, z5) — 0, g(z1, 22) — oo,
and z; — i, and p(z,,2,) — 0, g(z2,2;) — oo, and z, — [, respectively.
The T)-image and T)-image of Ry can be uniquely written as

{xl,x23"' s Xrs l>_l,ll)_il} and {J/'I,J/L"‘ )yr>i5_i5 ll)_ll})

respectively, where logd = d(zy,2;), and x; < X, < - < x,and yy < yp <
-+« < y,. (The regularity of H guarantees that no x; or y; is co.)

The map L = T; o (T»)~! takes H* to itself, permutes the elements of
the set {i, 4, —i, —iA}, and, since p(zy, z2) = g(z;, 1), interchanges 0 and
oo. Therefore,

L:t— -2/t

Since L = L~, there exists a permutation ¢ € S, such that for each j € I,
yj = L(x,;)) and x,(;y = L(y;). In particular, y; = L(x,()) and X,y =
L(y,). Therefore, if x; = y;, then L maps the set {7, id, —i, —i4, X,(1), X1 } tO
itself, and by the proof of Proposition 1, L is the identity-—a contradiction.
If x, <y, let Ty =T, and

Cu = (x1,X2, ", Xp, I, —1, 14, —i4);
if yi <xi,let Ty =T, and

CH = (yl’y2’ s Ve ia -1, ll’ —ll)

Case IV. Given H € RHF(r,c), let z; and z; (respectively z;; and
zy) be distinct points of Ry N HY, separated by the hyperbolic distance
d (respectively d'). If d = d’', then {zj,z;} = {zj,zr}. Indeed, let
p = p(zj,2;) and g = q(zj, 2 ), and let L be the Mobius transformation
that sends p — 0, ¢ = oo, and z; — i. It follows from the definition of p
and ¢ that (z;, z;]q,p) > 1. Since L preserves cross ratios, L(zy) = is for
some s > 1; since L is an isometry, d = logs. Define L’ and s’ similarly,
using j' and k' in place of j and k. The assumed equality of 4 and 4’

implies the equality of s and s'. Let L = (L')~'o L, and note that [ maps
zj to z;; and zy to zg. Therefore

(2)> 2K1Zj, Zk) = (2j0, Zpe|Z s Zper),

so, by asymmetry, {z;, z;} = {z, 2 }.
There is a unique way to write the roots of Py as

(x17x23"' >xr>zl,7l>22>_z—2>"' >ZC)_ZC)

such that
(a) d(zl3zj+1) < d(zl’zj+2) for all .] in IC—2>
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(b) d(zi, z3) < d(z3, z24) for all j in I._,, and

(¢) Tu(x;) < Ta(x;4+1) for all j in I,_;, where Ty is the Mobius trans-
formation that sends p(zy,z;) — 0, ¢g(z1,22) — oo, and z; — i. Let
Cu = (x; z).

Proposition 2. IfH and K are isomorphic regular forms, then Cy = Ck.

Proof. Suppose that K = (4,P) - H. By Proposition 2.3, Ry is the
Ap-image of Rg; since Cy and Cx are constructed from Ry and Rg by
devices that are invariant under the action of ¥, it follows that Cy =
Ck. q.e.d.

A form H is quasi-caronical if it is regular and Cj is a list of the points
of RH.

Proposition 3. - Let H be quasi-canonical. Then Ry contains neither 0
nor oo, and H has invertible components.

Proof. Suppose that H is of type (r,¢) and that Cy = {x;z). If c < 1,
then x; = —1, x; = 1/2, and x3 = 2. It follows that if x; is 0 or oo,
then ((x1,x2|x3,x;)) contains only three elements, which contradicts the
asymmetry of H.

If ¢ > 1, then z; =i and z; = iA, and the ideal points of /(z,, z,) are O
and oo. The regularity of H implies that neither O nor oo is in Ry. Finally,
note that ' (respectively H?) is invertible if and only if oo (respectively
0) is not a root of Py. q.e.d.

We need some additional terminology and notation. Let J(r,c) be the
set of all

&= (81382" ot ’sr;£r+l,5r+2,‘ T ,£r+26)’

where |ejl = 1forall jinl,ande;=1if j>rorj=1. If e e J(rc),
u; € R for each i in I,, and B; € C for each j‘in I., then M(u; f8;¢) is the
n x n block diagonal hermitian matrix with jth block ¢;u; for each j in I,

and (r + j)th block
( j>
B; 0O

for each j in I.. If each u; and B, equals 1, then we write M(1;1;¢) for
M(u; B;e).

Given H € RHF(r,c), let Cy = {(u; 8). H is canonical if it is quasi-
canonical and if for some ¢ € J(r,c), H' = —-M(1;1;¢) and H? =
M(u; B;¢).

Theorem 1. Let H € RHF(r,c). H is isomorphic to a unique canonical
Jorm Hy. The automorphism group of Hy is Go(r,c). Moreover, H has a
neighborhood U C RHF (r,c) on which there is defined a smooth G-valued
map g such that Ko = g(K) - K for each K € U.
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Proof. By construction, Cy is the Ty~image of a listing of the points of
Ry for some Ty € ¥. Choose P € GL(2,R) so that (Ap)~! = Ty, and let
H' = (I,P)- H. By Proposition 2.3, Ry is the Ty-image of Ry; hence,
Cy is a listing of the points of Ry. Since Cy = Cy by Proposition 2, H'
is quasi-canonical.

We now suppose that H is quasi-canonical and shall show that H is
isomorphic to a canonical form. Let Cy = (t1,1,,-- -, t,). By Proposition
3, H! is invertible; it follows from the definition of Py that t;,2,,--- ,¢,
are distinct eigenvalues of the matrix —H?(H')~!. For each i € I, choose
a row eigenvector (E;)T with eigenvalue ¢;. Clearly

(E)T(t;H' + H*) = 0.
Since H! and H? are hermitian, conjugation and transposition yield
(;H' + HHE; = 0.
Consequently, for any j, k € I,
(ENT(t;H' + HHE, =0 and (E;)T(;H'+ H>)E, =0.
Therefore, if ¢; # 7, then
(E)NTH'E, =0 and (E;)TH*E; =0

and H(E;, E;) =0.

If r =0, let §; = 1. Otherwise, for each j in I,,

H(E;,Ej)=rjei+rie; #0,

where r} and r? are real, and r}t;+77 = 0. Lets; = |r}|~1/%, let §; = r}/|r}],
and let ¢; = J;4,. '

If ¢ > 0, then for each j in I,

H(E2j-1,Erj) = vjer + 7je2 #0,

where ylt,1pj1 + 7 = 0. Let 5,40j-1 = d1/7}, let 5,427 = 1, and let
Ery2j—1 = &2 = 1.

The map that takes s;E; to f; for each j in I,, determines a matrix 4 in
GL(n,C). Let Hy = (A, —d,1)- H. 1t is easy to verify that H, is canonical.
Indeed, (Hy)! = —M(1;1;¢) and (Hy)?* = M(u; B;¢), where ¢ is as above,
uj=1t;foreach je€I,, and f; = t,.,;_, foreach j € I.

Thus, we have proved that every regular form is isomorphic to a canon-
ical form Hj. In order to show that Hy is unique, we shall prove that two
canonical forms are isomorphic if and only if they are equal.

Let H and K be canonical forms of type (r,¢) and suppose that K =
(A, P)- H. By Proposition 2.3, Ry is the Ap-image of Rx; by Proposition
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2, Cyg = Ck. Since Cy and Ck are lists of the points of Ry and Ry,
respectively, it follows that Ap maps Ry to itself. Hence, by Proposition
1, Ap is the identity, so P = pl for some p € R — {0}. Let Cy = (u; B).
For some choice of ¢ and € in J(r,¢),

H'=-M(};1;¢), H?=M(u;B;e),
K'=-M(1;1;8), K*=M(upB;é.

It is easy to verify that A4 is a diagonal matrix. Let a; be the jth diagonal
entry of 4. Then, for each j, k € I,

(i) aj@ K(fj, fx) = pH(f}, fi)-
If ¢ # 0, then (i) implies that for each j € I,

(ii) r2j—14rs2j = D.

If r # 0, then for each j € I,
H(f}, fj) = gj(—ey +uje;) and K(f}, f;) = &j(—e1 + uje).

Therefore, (i) implies that |a;}2é; = pe;. Since & = & = | by definition,
p > 0. Since || = |e;| = 1, it follows that §; = ¢; and

(iif) la;[2 = p.

Thus, H = K.

It follows from (ii) and (iii) that the automorphism group of a canonical
form of type (r,c) is Gy(r,c). Therefore, all that remains is to verify the
assertion of smoothness. Since this verification is straightforward, but
tedious, we shall omit it. q.e.d.

It follows from Theorem 1 that if i and K are isomorphic regular forms
of type (r,c) then Hy = K. Therefore

arc:[H}— Hy

is a well-defined map from [RHF(r,c)] to RHF (r,c).
Theorem 2. (a) g, is an admissible section.
(b) The set [RHF] =, 5. ,[RHF (r,c)] is a dense open subset of [HF].
Proof. (a) All of the required verifications are simple consequences of
Theorem 1.
(b) We already know the following facts:

(i) HF(n) is a dense open subset of HF;

1)

(1) ( ) Ur+2c "HF(I‘ C)

(ii1) AHF(r,c) is a dense open subset of HF (r,c);
)

(iv) RHF(r,c) is a dense open subset of AHF (r,c).
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Therefore, it is clear that RHF = |J,,,.., RHF(r,c) is a dense open
subset of HF, which, together with the definition of the quotient topology,
implies the desired result. q.e.d.

As we shall see, Theorem 2 is useful in producing examples of admissible
CR structures.

6. Examples of admissible CR structures and final remarks

Example 1. Return to Example 1.5. The forms h(} and h,? are hermi-
tian forms on 77. Choose a basis of T, let H 1 and H? be the matrices
of )} and A4 relative to this basis, and let H € HF be the form whose
components are H! and H?. It follows from the construction of h(} and h§
and the discussion of partially adapted moving coframes at the beginning
of §3 that [H] = L(g), where [ is the Levi map of T”. If H belongs to
some RHF(r,c), then by continuity £ maps some neighborhood of ¢ into
[RHF(r,c)]; by definition, the CR structure on this neighborhood is o, .-
admissible. Moreover, this argument together with Theorem 5.2(b) shows
that if H ¢ RHF then it is possible to deform some neighborhood of ¢
into an admissible CR submanifold of C"*2.

In the preceding example, it is not hard to write down formulas for par-
tially adapted moving coframes in terms of the defining functions. How-
ever, if 7" is g,.-admissible, explicit formulas for o, -adapted moving
coframes are in general unobtainable, since the map L= o, o L depends
on the roots of certain polynomials. (See the construction of o, in §5.)
Nonetheless, there is a class of admissible CR structures where everything
can be written down explicitly. ‘

Example 2. Let (x' + iy!, x2 + iy?,z!,z2,---, z") denote a point in
C"*2) and let J: TC"*2 — TC"+? pe the natural complex structure.

Given H € HF, for each o € I let

A a _ 1 n_z_; J_ Lyye j n
¢ =dy 2ij‘Z dz 2ijz dz",

- g = dx® — LH(LZEde + LH(LZdeE
277 jk 27 jk )

Note that (¢!, ¢2,8!,62,dz!,dz2, - ,dz",dz',dz2,--- ,dz") is a global
basis for CT*C"+2, 3
For each a € I, let f* = y* — %Hj’,’zz‘zk and let M be the zero set

of f! and f2. Since df;y = ¢ and J*df* = 65 foreachp € M, M is a
smooth codimension 2 submanifold of C”+2 and M inherits a codimension
2 CR structure T” from C"*2, Thus, we have a special case of Example
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1. Moreover, it is easy to write down a partially adapted moving coframe
(w,0): let w/ = dz/|5 and 6% = §2|,. Since d§° = zH" w’ AwF, the Levi

map of 7” is the constant map £:p — [H]. Suppose that H e RHF(r,c),
choose (A4, P) € G so that (4,P)- H = 0,.([H]), and let

@ = Aot foralljel, and 6*=P;6f forallach.

Then T is o,.~admissible, and (&, 9) is a o, .~adapted moving coframe.

In the theory of codimension 1 CR structures, one often considers a hy-
perquadric as a homogeneous model space for a nondegenerate CR struc-
ture (see [1]). It is possible to show that the quadrics in Example 2 are
also homogeneous spaces. However, since their CR structures are strongly
uniform, while, in general, an admissible CR structure is only weakly uni-
form, it is not clear that these quadrics can be of any particular use.

We conclude by mentioning several problems that might prove to be
interesting:

(1) Determine whether a given set of functions defined on some open
set in R#**+2 can arise as the functions ﬁ?ﬁ determined by an admissible CR

structure. This problem is somewhat similar to the problem of prescribing
curvature in Riemannian geometry, and, not surprisingly, leads to a com-
plicated system of nonlinear PDE. Since the Levi map of a nondegenerate
CR structure is locally constant, there is no strictly analogous problem in
codimension 1.

(2) Investigate the relationship between the topology of a manifold and
the possibility of its carrying a globally defined admissible CR structure.
Theorem 4.6 shows that the topology must be fairly simple if an admissible
CR structure is to exist. It would be interesting to know if there are
compact manifolds that carry admissible CR structures.

(3) Find a weaker notion of admissibility that is still strong enough
to yield geometric results. Theorem 5.2 suggests that admissibility is not
unduly restrictive; Theorem 4.6 suggests the contrary. If the theory in
codimension 1 is a trustworthy guide, then some sort of restriction on the
Levi map is probably necessary. One possibility is to require the Levi map
of the CR structure to be valued in some [H F(r,c)]. However, such a CR
structure will not generally be weakly uniform, so the geometric methods
of this paper are inapplicable.
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